PROBLEM SET 3 (problems \#3, \#4 corrected)

It's OK to work together on problem sets.

1. Starr's General Equilibrium Theory, problem 4.1(i)
2. Starr's General Equilibrium Theory, problem 4.2
3. Starr's General Equilibrium Theory, problem 5.3. It will make the problem a little easier if you take $X^{i}=R^{2}$, and set $r^{i}=(2,0)$.
4. The following preferences represent the notion: "I like x precisely twice as much as y, and I really like them both, but between two otherwise equivalent bundles , I'll choose the one with more x." Consider the following preferences, for a household with endowment $(1,1)$ and $X^{i}=R^{2}$, in the neighborhood of prices $\left(p_{x}, p_{y}\right)=(2 / 3,1 / 3)$, as p_{x} goes slightly up and down. Show that demand moves discontinuously from buying all x to buying all y . Show that the preferences specified do not fulfill C.V.

$$
\begin{aligned}
& (\mathrm{x}, \mathrm{y}) \succ\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \text { if } \quad 2 \mathrm{x}+\mathrm{y}>2 \mathrm{x}^{\prime}+\mathrm{y}^{\prime}, \quad \text { or } \\
& (\mathrm{x}, \mathrm{y}) \succ\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \\
& \text { if } \quad 2 \mathrm{x}+\mathrm{y}=2 \mathrm{x}^{\prime}+\mathrm{y}^{\prime} \quad \text { and } \quad \mathrm{x}>\mathrm{x}^{\prime} . \\
& (\mathrm{x}, \mathrm{y}) \sim\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \\
& \text { only if } \quad(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) .
\end{aligned}
$$

